(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
Copyright (C) 2010-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Error of the multiplication is in the FLX/FLT format *)
Require Import Core Operations Plus_error.
Section Fprop_mult_error.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLX_exp prec)).
Notation cexp := (cexp beta (FLX_exp prec)).
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
Proof.
Admitted.
Proof with auto with typeclass_instances.
intros x y Hx Hy Hz.
set (f := (round beta (FLX_exp prec) rnd (x * y))).
destruct (Req_dec (x * y) 0) as [Hxy0|Hxy0].
contradict Hz.
rewrite Hxy0.
rewrite round_0...
ring.
destruct (mag beta (x * y)) as (exy, Hexy).
specialize (Hexy Hxy0).
destruct (mag beta (f - x * y)) as (er, Her).
specialize (Her Hz).
destruct (mag beta x) as (ex, Hex).
assert (Hx0: (x <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_l.
specialize (Hex Hx0).
destruct (mag beta y) as (ey, Hey).
assert (Hy0: (y <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_r.
specialize (Hey Hy0).
(* *) assert (Hc1: (cexp (x * y)%R - prec <= cexp x + cexp y)%Z).
unfold cexp, FLX_exp.
rewrite mag_unique with (1 := Hex).
rewrite mag_unique with (1 := Hey).
rewrite mag_unique with (1 := Hexy).
cut (exy - 1 < ex + ey)%Z.
omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := proj1 Hexy).
rewrite Rabs_mult.
rewrite bpow_plus.
apply Rmult_le_0_lt_compat.
apply Rabs_pos.
apply Rabs_pos.
apply Hex.
apply Hey.
(* *) assert (Hc2: (cexp x + cexp y <= cexp (x * y)%R)%Z).
unfold cexp, FLX_exp.
rewrite mag_unique with (1 := Hex).
rewrite mag_unique with (1 := Hey).
rewrite mag_unique with (1 := Hexy).
cut ((ex - 1) + (ey - 1) < exy)%Z.
generalize (prec_gt_0 prec).
clear ; omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := proj2 Hexy).
rewrite Rabs_mult.
rewrite bpow_plus.
apply Rmult_le_compat.
apply bpow_ge_0.
apply bpow_ge_0.
apply Hex.
apply Hey.
(* *) assert (Hr: ((F2R (Float beta (- (Ztrunc (scaled_mantissa beta (FLX_exp prec) x) * Ztrunc (scaled_mantissa beta (FLX_exp prec) y)) + rnd (scaled_mantissa beta (FLX_exp prec) (x * y)) * beta ^ (cexp (x * y)%R - (cexp x + cexp y))) (cexp x + cexp y))) = f - x * y)%R).
rewrite Hx at 6.
rewrite Hy at 6.
rewrite <- F2R_mult.
simpl.
unfold f, round, Rminus.
rewrite <- F2R_opp, Rplus_comm, <- F2R_plus.
unfold Fplus.
simpl.
now rewrite Zle_imp_le_bool with (1 := Hc2).
(* *) exists (Float beta (- (Ztrunc (scaled_mantissa beta (FLX_exp prec) x) * Ztrunc (scaled_mantissa beta (FLX_exp prec) y)) + rnd (scaled_mantissa beta (FLX_exp prec) (x * y)) * beta ^ (cexp (x * y)%R - (cexp x + cexp y))) (cexp x + cexp y)).
split;[assumption|split].
rewrite Hr.
simpl.
clear Hr.
apply Z.le_trans with (cexp (x * y)%R - prec)%Z.
unfold cexp, FLX_exp.
apply Zplus_le_compat_r.
rewrite mag_unique with (1 := Hexy).
apply mag_le_bpow with (1 := Hz).
replace (bpow (exy - prec)) with (ulp beta (FLX_exp prec) (x * y)).
apply error_lt_ulp...
rewrite ulp_neq_0; trivial.
unfold cexp.
now rewrite mag_unique with (1 := Hexy).
apply Hc1.
reflexivity.
Qed.
Proof.
Admitted.
Proof.
intros x y Hx Hy.
destruct (Req_dec (round beta (FLX_exp prec) rnd (x * y) - x * y) 0) as [Hr0|Hr0].
{
rewrite Hr0.
apply generic_format_0.
}
{
destruct (mult_error_FLX_aux x y Hx Hy Hr0) as ((m,e),(H1,(H2,H3))).
rewrite <- H1.
apply generic_format_F2R.
easy.
}
Qed.
Proof.
Admitted.
Proof.
intros x e Fx.
destruct (Req_dec x 0) as [Zx|Nzx].
{
rewrite Zx.
rewrite Rmult_0_l.
apply generic_format_0.
}
{
rewrite Fx.
set (mx := Ztrunc _).
set (ex := cexp _).
pose (f := {| Fnum := mx; Fexp := ex + e |} : float beta).
apply (generic_format_F2R' _ _ _ f).
{
unfold F2R.
simpl.
rewrite bpow_plus.
rewrite Rmult_assoc.
easy.
}
{
intro Nzmx.
unfold mx.
unfold ex.
rewrite <- Fx.
unfold f.
unfold ex.
simpl.
unfold cexp.
rewrite (mag_mult_bpow _ _ _ Nzx).
unfold FLX_exp.
omega.
}
}
Qed.
End Fprop_mult_error.
Section Fprop_mult_error_FLT.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLT_exp emin prec)).
Notation cexp := (cexp beta (FLT_exp emin prec)).
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
Proof.
Admitted.
Proof with auto with typeclass_instances.
intros x y Hx Hy Hxy.
set (f := (round beta (FLT_exp emin prec) rnd (x * y))).
destruct (Req_dec (f - x * y) 0) as [Hr0|Hr0].
rewrite Hr0.
apply generic_format_0.
destruct (Req_dec (x * y) 0) as [Hxy'|Hxy'].
unfold f.
rewrite Hxy'.
rewrite round_0...
ring_simplify (0 - 0)%R.
apply generic_format_0.
specialize (Hxy Hxy').
destruct (mult_error_FLX_aux beta prec rnd x y) as ((m,e),(H1,(H2,H3))).
now apply generic_format_FLX_FLT with emin.
now apply generic_format_FLX_FLT with emin.
rewrite <- (round_FLT_FLX beta emin).
assumption.
apply Rle_trans with (2:=Hxy).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; omega.
rewrite <- (round_FLT_FLX beta emin) in H1.
2:apply Rle_trans with (2:=Hxy).
2:apply bpow_le ; generalize (prec_gt_0 prec) ; clear ; omega.
unfold f; rewrite <- H1.
apply generic_format_F2R.
intros _.
simpl in H2, H3.
unfold cexp, FLT_exp.
case (Zmax_spec (mag beta (F2R (Float beta m e)) - prec) emin); intros (M1,M2); rewrite M2.
apply Z.le_trans with (2:=H2).
unfold cexp, FLX_exp.
apply Z.le_refl.
rewrite H3.
unfold cexp, FLX_exp.
assert (Hxy0:(x*y <> 0)%R).
contradict Hr0.
unfold f.
rewrite Hr0.
rewrite round_0...
ring.
assert (Hx0: (x <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_l.
assert (Hy0: (y <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_r.
destruct (mag beta x) as (ex,Ex) ; simpl.
specialize (Ex Hx0).
destruct (mag beta y) as (ey,Ey) ; simpl.
specialize (Ey Hy0).
assert (emin + 2 * prec -1 < ex + ey)%Z.
2: omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1:=Hxy).
rewrite Rabs_mult, bpow_plus.
apply Rmult_le_0_lt_compat; try apply Rabs_pos.
apply Ex.
apply Ey.
Qed.
Proof.
Admitted.
Proof.
intros (ny,ey).
rewrite <- F2R_Zabs.
unfold F2R.
simpl.
case (Zle_lt_or_eq 0 (Z.abs ny)).
{
apply Z.abs_nonneg.
}
{
intros Hy _.
rewrite <- (Rmult_1_l (bpow _)) at 1.
apply Rmult_le_compat_r.
{
apply bpow_ge_0.
}
{
apply IZR_le.
omega.
}
}
{
intros H1 H2.
contradict H2.
replace ny with 0%Z.
{
simpl.
ring.
}
{
apply sym_eq, Z.abs_0_iff, sym_eq.
easy.
}
}
Qed.
Proof.
Admitted.
Proof with auto with typeclass_instances.
intros x y e.
set (f := (round beta (FLT_exp emin prec) rnd (x * y))).
intros Fx Fy H1.
unfold f.
rewrite Fx.
rewrite Fy.
rewrite <- F2R_mult.
simpl Fmult.
destruct (round_repr_same_exp beta (FLT_exp emin prec) rnd (Ztrunc (scaled_mantissa beta (FLT_exp emin prec) x) * Ztrunc (scaled_mantissa beta (FLT_exp emin prec) y)) (cexp x + cexp y)) as (n,Hn).
rewrite Hn.
clear Hn.
rewrite <- F2R_minus.
rewrite Fminus_same_exp.
intros K.
eapply Rle_trans with (2:=F2R_ge _ K).
simpl (Fexp _).
apply bpow_le.
unfold cexp.
unfold FLT_exp.
destruct (mag beta x) as (ex,Hx).
destruct (mag beta y) as (ey,Hy).
simpl.
apply Z.le_trans with ((ex-prec)+(ey-prec))%Z.
{
assert (e + 2*prec -1< ex+ey)%Z.
{
idtac.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=H1).
rewrite Rabs_mult.
rewrite bpow_plus.
apply Rmult_lt_compat.
{
apply Rabs_pos.
}
{
apply Rabs_pos.
}
{
apply Hx.
intros K'.
contradict H1.
apply Rlt_not_le.
rewrite K'.
rewrite Rmult_0_l.
rewrite Rabs_R0.
apply bpow_gt_0.
}
{
apply Hy.
intros K'.
contradict H1.
apply Rlt_not_le.
rewrite K'.
rewrite Rmult_0_r.
rewrite Rabs_R0.
apply bpow_gt_0.
}
}
{
omega.
}
}
{
apply Zplus_le_compat.
{
apply Z.le_max_l.
}
{
apply Z.le_max_l.
}
}
Qed.
Proof.
Admitted.
Proof.
intros x e Fx He.
destruct (Req_dec x 0) as [Zx|Nzx].
{
rewrite Zx.
rewrite Rmult_0_l.
apply generic_format_0.
}
{
rewrite Fx.
set (mx := Ztrunc _).
set (ex := cexp _).
pose (f := {| Fnum := mx; Fexp := ex + e |} : float beta).
apply (generic_format_F2R' _ _ _ f).
{
unfold F2R.
simpl.
rewrite bpow_plus.
rewrite Rmult_assoc.
easy.
}
{
intro Nzmx.
unfold mx.
unfold ex.
rewrite <- Fx.
unfold f.
unfold ex.
simpl.
unfold cexp.
rewrite (mag_mult_bpow _ _ _ Nzx).
unfold FLT_exp.
rewrite Z.max_l.
{
idtac.
rewrite <- Z.add_max_distr_r.
set (n := (_ - _ + _)%Z).
apply (Z.le_trans _ n).
{
unfold n.
omega.
}
{
idtac.
apply Z.le_max_l.
}
}
{
omega.
}
}
}
Qed.
End Fprop_mult_error_FLT.