(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness of instruction selection *)

Require Import FunInd.
Require Import Coqlib Maps.
Require Import AST Linking Errors Integers.
Require Import Values Memory Builtins Events Globalenvs Smallstep.
Require Import Switch Cminor Op CminorSel Cminortyping.
Require Import SelectOp SelectDiv SplitLong SelectLong Selection.
Require Import SelectOpproof SelectDivproof SplitLongproof SelectLongproof.
Local Open Scope cminorsel_scope.
Local Open Scope error_monad_scope.
(** * Relational specification of instruction selection *) Definition match_fundef (cunit: Cminor.program) (f: Cminor.fundef) (tf: CminorSel.fundef) : Prop := exists hf, helper_functions_declared cunit hf /\ sel_fundef (prog_defmap cunit) hf f = OK tf.
Definition match_prog (p: Cminor.program) (tp: CminorSel.program) := match_program match_fundef eq p tp.
Proof.
Admitted.
Proof.
intros.
set (f := fun m id gd => if globdef_of_interest gd then PTree.set id gd m else m) in *.
set (P := fun m m' => m'!id = Some gd -> m!id = Some gd).
assert (X: P dm (PTree.fold f dm (PTree.empty _))).
apply PTree_Properties.fold_rec.
-
unfold P; intros.
rewrite <- H0; auto.
-
red.
rewrite ! PTree.gempty.
auto.
-
unfold P; intros.
rewrite PTree.gsspec.
unfold f in H3.
destruct (globdef_of_interest v).
+
rewrite PTree.gsspec in H3.
destruct (peq id k); auto.
+
apply H2 in H3.
destruct (peq id k).
congruence.
auto.
apply X.
auto.
Qed.
Proof.
Admitted.
Proof.
intros.
set (P := fun (m: PTree.t globdef) res => res = Some id -> m!id = Some(Gfun(External (EF_runtime name sg)))).
assert (P globs (PTree.fold (lookup_helper_aux name sg) globs None)).
apply PTree_Properties.fold_rec; red; intros.
-
rewrite <- H0.
apply H1; auto.
-
discriminate.
-
assert (EITHER: k = id /\ v = Gfun (External (EF_runtime name sg)) \/ a = Some id).
unfold lookup_helper_aux in H3.
destruct v; auto.
destruct f; auto.
destruct e; auto.
destruct (String.string_dec name name0); auto.
destruct (signature_eq sg sg0); auto.
inversion H3.
left; split; auto.
repeat f_equal; auto.
destruct EITHER as [[X Y] | X].
subst k v.
apply PTree.gss.
apply H2 in X.
rewrite PTree.gso by congruence.
auto.
red in H0.
unfold lookup_helper in H.
destruct (PTree.fold (lookup_helper_aux name sg) globs None); inv H.
auto.
Qed.
Proof.
intros.
red.
eapply record_globdefs_sound.
apply lookup_helper_correct_1.
eauto.
Qed.
Proof.
intros.
apply lookup_helper_correct_1 in H.
apply record_globdefs_sound in H.
auto.
Qed.
Proof.
Admitted.
Proof.
intros.
monadInv H.
red; simpl.
auto 20 using lookup_helper_correct.
Qed.
Proof.
Admitted.
Proof.
intros.
monadInv H.
eapply match_transform_partial_program_contextual.
eexact EQ0.
intros.
exists x; split; auto.
apply get_helpers_correct; auto.
Qed.
Proof.
Admitted.
Proof.
intros.
assert (X: forall id name sg, helper_declared p id name sg -> helper_declared p' id name sg).
unfold helper_declared; intros.
destruct (prog_defmap_linkorder _ _ _ _ H0 H1) as (gd & P & Q).
inv Q.
inv H3.
auto.
red in H.
decompose [Logic.and] H; clear H.
red; auto 20.
Qed.
(** * Correctness of the instruction selection functions for expressions *) Section PRESERVATION.
Variable prog: Cminor.program.
Variable tprog: CminorSel.program.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Hypothesis TRANSF: match_prog prog tprog.
Proof.
Admitted.
Proof.
red; intros.
destruct TRANSF as [A _].
exploit list_forall2_in_left; eauto.
intros ((i' & gd') & B & (C & D)).
simpl in *.
inv D.
destruct H2 as (hf & P & Q).
destruct f; monadInv Q.
-
monadInv EQ.
econstructor; apply type_function_sound; eauto.
-
constructor.
Qed.
Proof.
Admitted.
Proof (Genv.find_symbol_match TRANSF).
Proof.
Admitted.
Proof (Genv.senv_match TRANSF).
Proof.
Admitted.
Proof (Genv.find_funct_ptr_match TRANSF).
Proof.
Admitted.
Proof.
intros.
inv H0.
eapply Genv.find_funct_match; eauto.
discriminate.
Qed.
Proof.
Admitted.
Proof.
intros.
destruct H as (hf & P & Q).
destruct f; monadInv Q; auto.
monadInv EQ; auto.
Qed.
Proof.
intros.
monadInv H.
simpl.
eauto.
Qed.
Proof.
intros.
monadInv H.
auto.
Qed.
Proof.
Admitted.
Proof.
assert (X: forall id name sg, helper_declared prog id name sg -> helper_declared tprog id name sg).
unfold helper_declared; intros.
generalize (match_program_defmap _ _ _ _ _ TRANSF id).
unfold Cminor.fundef; rewrite H; intros R; inv R.
inv H2.
destruct H4 as (cu & A & B).
monadInv B.
auto.
unfold helper_functions_declared; intros.
decompose [Logic.and] H; clear H.
auto 20.
Qed.
Section CMCONSTR.
Variable cunit: Cminor.program.
Variable hf: helper_functions.
Hypothesis LINK: linkorder cunit prog.
Hypothesis HF: helper_functions_declared cunit hf.
Proof.
Admitted.
Proof.
apply helper_functions_preserved.
eapply helper_functions_declared_linkorder; eauto.
Qed.
Variable sp: val.
Variable e: env.
Variable m: mem.
Proof.
Admitted.
Proof.
intros until a.
functional induction (condexpr_of_expr a); intros.
(* compare *) inv H.
econstructor; eauto.
simpl in H6.
inv H6.
apply Val.bool_of_val_of_optbool.
auto.
(* condition *) inv H.
econstructor; eauto.
destruct va; eauto.
(* let *) inv H.
econstructor; eauto.
(* default *) econstructor.
constructor.
eauto.
constructor.
simpl.
inv H0.
auto.
Qed.
Proof.
Admitted.
Proof.
intros a; functional induction (condition_of_expr a); intros; simpl.
-
inv H.
exists vl; split; auto.
simpl in H6.
inv H6.
apply Val.bool_of_val_of_optbool in H0.
auto.
-
exists (v :: nil); split.
constructor; auto; constructor.
inv H0; simpl; auto.
Qed.
Proof.
Admitted.
Proof.
intros.
generalize H0; destruct v; simpl; intro; try discriminate.
unfold load.
generalize (eval_addressing _ _ _ _ _ chunk _ _ _ _ H (eq_refl _)).
destruct (addressing chunk a).
intros [vl [EV EQ]].
eapply eval_Eload; eauto.
Qed.
Proof.
Admitted.
Proof.
intros.
generalize H1; destruct v1; simpl; intro; try discriminate.
unfold store.
generalize (eval_addressing _ _ _ _ _ chunk _ _ _ _ H (eq_refl _)).
destruct (addressing chunk a1).
intros [vl [EV EQ]].
eapply step_store; eauto.
Qed.
Proof.
Admitted.
Proof.
destruct op; simpl; intros; FuncInv; try subst v.
apply eval_cast8unsigned; auto.
apply eval_cast8signed; auto.
apply eval_cast16unsigned; auto.
apply eval_cast16signed; auto.
apply eval_negint; auto.
apply eval_notint; auto.
apply eval_negf; auto.
apply eval_absf; auto.
apply eval_negfs; auto.
apply eval_absfs; auto.
apply eval_singleoffloat; auto.
apply eval_floatofsingle; auto.
eapply eval_intoffloat; eauto.
eapply eval_intuoffloat; eauto.
eapply eval_floatofint; eauto.
eapply eval_floatofintu; eauto.
eapply eval_intofsingle; eauto.
eapply eval_intuofsingle; eauto.
eapply eval_singleofint; eauto.
eapply eval_singleofintu; eauto.
eapply eval_negl; eauto.
eapply eval_notl; eauto.
eapply eval_intoflong; eauto.
eapply eval_longofint; eauto.
eapply eval_longofintu; eauto.
eapply eval_longoffloat; eauto.
eapply eval_longuoffloat; eauto.
eapply eval_floatoflong; eauto.
eapply eval_floatoflongu; eauto.
eapply eval_longofsingle; eauto.
eapply eval_longuofsingle; eauto.
eapply eval_singleoflong; eauto.
eapply eval_singleoflongu; eauto.
Qed.
Proof.
Admitted.
Proof.
destruct op; simpl; intros; FuncInv; try subst v.
apply eval_add; auto.
apply eval_sub; auto.
apply eval_mul; auto.
eapply eval_divs; eauto.
eapply eval_divu; eauto.
eapply eval_mods; eauto.
eapply eval_modu; eauto.
apply eval_and; auto.
apply eval_or; auto.
apply eval_xor; auto.
apply eval_shl; auto.
apply eval_shr; auto.
apply eval_shru; auto.
apply eval_addf; auto.
apply eval_subf; auto.
apply eval_mulf; auto.
apply eval_divf; auto.
apply eval_addfs; auto.
apply eval_subfs; auto.
apply eval_mulfs; auto.
apply eval_divfs; auto.
eapply eval_addl; eauto.
eapply eval_subl; eauto.
eapply eval_mull; eauto.
eapply eval_divls; eauto.
eapply eval_divlu; eauto.
eapply eval_modls; eauto.
eapply eval_modlu; eauto.
eapply eval_andl; eauto.
eapply eval_orl; eauto.
eapply eval_xorl; eauto.
eapply eval_shll; eauto.
eapply eval_shrl; eauto.
eapply eval_shrlu; eauto.
apply eval_comp; auto.
apply eval_compu; auto.
apply eval_compf; auto.
apply eval_compfs; auto.
exists v; split; auto.
eapply eval_cmpl; eauto.
exists v; split; auto.
eapply eval_cmplu; eauto.
Qed.
Proof.
Admitted.
Proof.
unfold sel_select; intros.
specialize (eval_condition_of_expr _ _ _ _ H H2).
destruct (condition_of_expr a1) as [cond args]; simpl fst; simpl snd.
intros (vl & A & B).
destruct (select ty cond args a2 a3) as [a|] eqn:SEL.
-
eapply eval_select; eauto.
-
exists (if b then v2 else v3); split.
econstructor; eauto.
eapply eval_condexpr_of_expr; eauto.
destruct b; auto.
apply Val.lessdef_normalize.
Qed.
Proof.
Admitted.
Proof.
intros until le; intros SEL ARGS SEM.
destruct bf as [bf|bf]; simpl in SEL.
-
destruct bf; try discriminate.
+
(* select *) inv ARGS; try discriminate.
inv H0; try discriminate.
inv H2; try discriminate.
inv H3; try discriminate.
inv SEL.
simpl in SEM.
destruct v1; inv SEM.
replace (Val.normalize (if Int.eq i Int.zero then v2 else v0) t) with (Val.select (Some (negb (Int.eq i Int.zero))) v0 v2 t) by (destruct (Int.eq i Int.zero); reflexivity).
eapply eval_sel_select; eauto.
constructor.
+
(* fabs *) inv ARGS; try discriminate.
inv H0; try discriminate.
inv SEL.
simpl in SEM; inv SEM.
apply eval_absf; auto.
-
eapply eval_platform_builtin; eauto.
Qed.
End CMCONSTR.
Proof.
Admitted.
Proof.
intros e id.
unfold expr_is_addrof_ident.
destruct e; try congruence.
destruct c; try congruence.
predSpec Ptrofs.eq Ptrofs.eq_spec i0 Ptrofs.zero; congruence.
Qed.
Proof.
Admitted.
Proof.
unfold classify_call; intros.
destruct (expr_is_addrof_ident a) as [id|] eqn:EA; auto.
exploit expr_is_addrof_ident_correct; eauto.
intros EQ; subst a.
inv H0.
inv H3.
unfold Genv.symbol_address in *.
destruct (Genv.find_symbol ge id) as [b|] eqn:FS; try discriminate.
rewrite Genv.find_funct_find_funct_ptr in H1.
assert (DFL: exists b1, Genv.find_symbol ge id = Some b1 /\ Vptr b Ptrofs.zero = Vptr b1 Ptrofs.zero) by (exists b; auto).
unfold globdef; destruct (prog_defmap unit)!id as [[[f|ef] |gv] |] eqn:G; auto.
destruct (ef_inline ef) eqn:INLINE; auto.
destruct (prog_defmap_linkorder _ _ _ _ H G) as (gd & P & Q).
inv Q.
inv H2.
-
apply Genv.find_def_symbol in P.
destruct P as (b' & X & Y).
fold ge in X, Y.
rewrite <- Genv.find_funct_ptr_iff in Y.
congruence.
-
simpl in INLINE.
discriminate.
Qed.
(** Translation of [switch] statements *) Inductive Rint: Z -> val -> Prop := | Rint_intro: forall n, Rint (Int.unsigned n) (Vint n).
Inductive Rlong: Z -> val -> Prop := | Rlong_intro: forall n, Rlong (Int64.unsigned n) (Vlong n).
Section SEL_SWITCH.
Variable make_cmp_eq: expr -> Z -> expr.
Variable make_cmp_ltu: expr -> Z -> expr.
Variable make_sub: expr -> Z -> expr.
Variable make_to_int: expr -> expr.
Variable modulus: Z.
Variable R: Z -> val -> Prop.
Hypothesis eval_make_cmp_eq: forall sp e m le a v i n, eval_expr tge sp e m le a v -> R i v -> 0 <= n < modulus -> eval_expr tge sp e m le (make_cmp_eq a n) (Val.of_bool (zeq i n)).
Hypothesis eval_make_cmp_ltu: forall sp e m le a v i n, eval_expr tge sp e m le a v -> R i v -> 0 <= n < modulus -> eval_expr tge sp e m le (make_cmp_ltu a n) (Val.of_bool (zlt i n)).
Hypothesis eval_make_sub: forall sp e m le a v i n, eval_expr tge sp e m le a v -> R i v -> 0 <= n < modulus -> exists v', eval_expr tge sp e m le (make_sub a n) v' /\ R ((i - n) mod modulus) v'.
Hypothesis eval_make_to_int: forall sp e m le a v i, eval_expr tge sp e m le a v -> R i v -> exists v', eval_expr tge sp e m le (make_to_int a) v' /\ Rint (i mod Int.modulus) v'.
Proof.
Admitted.
Proof.
intros until x; intros Ri.
induction t; simpl; intros until le; intros WF ARG MATCH.
-
(* base case *) inv MATCH.
constructor.
-
(* eq test *) inv WF.
assert (eval_expr tge sp e m le (make_cmp_eq (Eletvar arg) key) (Val.of_bool (zeq i key))).
eapply eval_make_cmp_eq; eauto.
constructor; auto.
eapply eval_XEcondition with (va := zeq i key).
eapply eval_condexpr_of_expr; eauto.
destruct (zeq i key); constructor; auto.
destruct (zeq i key); simpl.
+
inv MATCH.
constructor.
+
eapply IHt; eauto.
-
(* lt test *) inv WF.
assert (eval_expr tge sp e m le (make_cmp_ltu (Eletvar arg) key) (Val.of_bool (zlt i key))).
eapply eval_make_cmp_ltu; eauto.
constructor; auto.
eapply eval_XEcondition with (va := zlt i key).
eapply eval_condexpr_of_expr; eauto.
destruct (zlt i key); constructor; auto.
destruct (zlt i key); simpl.
+
eapply IHt1; eauto.
+
eapply IHt2; eauto.
-
(* jump table *) inv WF.
exploit (eval_make_sub sp e m le).
eapply eval_Eletvar.
eauto.
eauto.
instantiate (1 := ofs).
auto.
intros (v' & A & B).
set (i' := (i - ofs) mod modulus) in *.
assert (eval_expr tge sp e m (v' :: le) (make_cmp_ltu (Eletvar O) sz) (Val.of_bool (zlt i' sz))).
eapply eval_make_cmp_ltu; eauto.
constructor; auto.
econstructor.
eauto.
eapply eval_XEcondition with (va := zlt i' sz).
eapply eval_condexpr_of_expr; eauto.
destruct (zlt i' sz); constructor; auto.
destruct (zlt i' sz); simpl.
+
exploit (eval_make_to_int sp e m (v' :: le) (Eletvar O)).
constructor.
simpl; eauto.
eauto.
intros (v'' & C & D).
inv D.
econstructor; eauto.
congruence.
+
eapply IHt; eauto.
Qed.
Proof.
Admitted.
Proof.
intros.
exploit validate_switch_correct; eauto.
omega.
intros [A B].
econstructor.
eauto.
eapply sel_switch_correct_rec; eauto.
Qed.
End SEL_SWITCH.
Section SEL_SWITCH_INT.
Variable cunit: Cminor.program.
Variable hf: helper_functions.
Hypothesis LINK: linkorder cunit prog.
Hypothesis HF: helper_functions_declared cunit hf.
Proof.
Admitted.
Proof.
apply helper_functions_preserved.
eapply helper_functions_declared_linkorder; eauto.
Qed.
Proof.
Admitted.
Proof.
assert (INTCONST: forall n sp e m le, eval_expr tge sp e m le (Eop (Ointconst n) Enil) (Vint n)).
intros.
econstructor.
constructor.
auto.
intros.
eapply sel_switch_correct with (R := Rint); eauto.
-
intros until n; intros EVAL R RANGE.
exploit eval_comp.
eexact EVAL.
apply (INTCONST (Int.repr n)).
instantiate (1 := Ceq).
intros (vb & A & B).
inv R.
unfold Val.cmp in B.
simpl in B.
revert B.
predSpec Int.eq Int.eq_spec n0 (Int.repr n); intros B; inv B.
rewrite Int.unsigned_repr.
unfold proj_sumbool; rewrite zeq_true; auto.
unfold Int.max_unsigned; omega.
unfold proj_sumbool; rewrite zeq_false; auto.
red; intros; elim H1.
rewrite <- (Int.repr_unsigned n0).
congruence.
-
intros until n; intros EVAL R RANGE.
exploit eval_compu.
eexact EVAL.
apply (INTCONST (Int.repr n)).
instantiate (1 := Clt).
intros (vb & A & B).
inv R.
unfold Val.cmpu in B.
simpl in B.
unfold Int.ltu in B.
rewrite Int.unsigned_repr in B.
destruct (zlt (Int.unsigned n0) n); inv B; auto.
unfold Int.max_unsigned; omega.
-
intros until n; intros EVAL R RANGE.
exploit eval_sub.
eexact EVAL.
apply (INTCONST (Int.repr n)).
intros (vb & A & B).
inv R.
simpl in B.
inv B.
econstructor; split; eauto.
replace ((Int.unsigned n0 - n) mod Int.modulus) with (Int.unsigned (Int.sub n0 (Int.repr n))).
constructor.
unfold Int.sub.
rewrite Int.unsigned_repr_eq.
f_equal.
f_equal.
apply Int.unsigned_repr.
unfold Int.max_unsigned; omega.
-
intros until i0; intros EVAL R.
exists v; split; auto.
inv R.
rewrite Z.mod_small by (apply Int.unsigned_range).
constructor.
-
constructor.
-
apply Int.unsigned_range.
Qed.
Proof.
Admitted.
Proof.
intros.
eapply sel_switch_correct with (R := Rlong); eauto.
-
intros until n; intros EVAL R RANGE.
eapply eval_cmpl.
eexact EVAL.
apply eval_longconst with (n := Int64.repr n).
inv R.
unfold Val.cmpl.
simpl.
f_equal; f_equal.
unfold Int64.eq.
rewrite Int64.unsigned_repr.
destruct (zeq (Int64.unsigned n0) n); auto.
unfold Int64.max_unsigned; omega.
-
intros until n; intros EVAL R RANGE.
eapply eval_cmplu; auto.
eexact EVAL.
apply eval_longconst with (n := Int64.repr n).
inv R.
unfold Val.cmplu.
simpl.
f_equal; f_equal.
unfold Int64.ltu.
rewrite Int64.unsigned_repr.
destruct (zlt (Int64.unsigned n0) n); auto.
unfold Int64.max_unsigned; omega.
-
intros until n; intros EVAL R RANGE.
exploit eval_subl; auto; try apply HF'.
eexact EVAL.
apply eval_longconst with (n := Int64.repr n).
intros (vb & A & B).
inv R.
simpl in B.
inv B.
econstructor; split; eauto.
replace ((Int64.unsigned n0 - n) mod Int64.modulus) with (Int64.unsigned (Int64.sub n0 (Int64.repr n))).
constructor.
unfold Int64.sub.
rewrite Int64.unsigned_repr_eq.
f_equal.
f_equal.
apply Int64.unsigned_repr.
unfold Int64.max_unsigned; omega.
-
intros until i0; intros EVAL R.
exploit eval_lowlong.
eexact EVAL.
intros (vb & A & B).
inv R.
simpl in B.
inv B.
econstructor; split; eauto.
replace (Int64.unsigned n mod Int.modulus) with (Int.unsigned (Int64.loword n)).
constructor.
unfold Int64.loword.
apply Int.unsigned_repr_eq.
-
constructor.
-
apply Int64.unsigned_range.
Qed.
End SEL_SWITCH_INT.
(** Compatibility of evaluation functions with the "less defined than" relation. *) Ltac TrivialExists := match goal with | [ |- exists v, Some ?x = Some v /\ _ ] => exists x; split; auto | _ => idtac end.
Proof.
Admitted.
Proof.
intros until v; intros EV LD.
inv LD.
exists v; auto.
destruct op; simpl in *; inv EV; TrivialExists.
Qed.
Proof.
Admitted.
Proof.
intros until m'; intros EV LD1 LD2 ME.
assert (exists v', eval_binop op v1' v2' m = Some v' /\ Val.lessdef v v').
inv LD1.
inv LD2.
exists v; auto.
destruct op; destruct v1'; simpl in *; inv EV; TrivialExists.
destruct op; simpl in *; inv EV; TrivialExists.
assert (CMPU: forall c, eval_binop (Ocmpu c) v1 v2 m = Some v -> exists v' : val, eval_binop (Ocmpu c) v1' v2' m' = Some v' /\ Val.lessdef v v').
intros c A.
simpl in *.
inv A.
econstructor; split.
eauto.
apply Val.of_optbool_lessdef.
intros.
apply Val.cmpu_bool_lessdef with (Mem.valid_pointer m) v1 v2; auto.
intros; eapply Mem.valid_pointer_extends; eauto.
assert (CMPLU: forall c, eval_binop (Ocmplu c) v1 v2 m = Some v -> exists v' : val, eval_binop (Ocmplu c) v1' v2' m' = Some v' /\ Val.lessdef v v').
intros c A.
simpl in *.
unfold Val.cmplu in *.
destruct (Val.cmplu_bool (Mem.valid_pointer m) c v1 v2) as [b|] eqn:C; simpl in A; inv A.
eapply Val.cmplu_bool_lessdef with (valid_ptr' := (Mem.valid_pointer m')) in C; eauto using Mem.valid_pointer_extends.
rewrite C.
exists (Val.of_bool b); auto.
destruct op; auto.
Qed.
(** * Semantic preservation for instruction selection. *) (** Relationship between the local environments. *) Definition env_lessdef (e1 e2: env) : Prop := forall id v1, e1!id = Some v1 -> exists v2, e2!id = Some v2 /\ Val.lessdef v1 v2.
Proof.
Admitted.
Proof.
intros; red; intros.
rewrite PTree.gsspec in *.
destruct (peq id0 id).
exists v2; split; congruence.
auto.
Qed.
Proof.
induction e1.
intros.
destruct optid.
simpl.
apply set_var_lessdef.
eauto.
eauto.
simpl.
eauto.
intros.
destruct optid.
simpl.
apply set_var_lessdef.
eauto.
eauto.
red.
simpl.
eauto.
Qed.
Proof.
unfold set_optvar; intros.
destruct optid; auto.
apply set_var_lessdef; auto.
Qed.
Proof.
induction il.
intros.
simpl.
econstructor.
split.
eauto.
eauto.
intros.
simpl.
inv H.
econstructor.
eauto.
eapply set_var_lessdef.
eauto.
eauto.
Qed.
Proof.
induction il; simpl; intros.
red; intros.
rewrite PTree.gempty in H0; congruence.
inv H; apply set_var_lessdef; auto.
Qed.
Proof.
induction il.
simpl.
eauto.
simpl.
apply set_var_lessdef.
eauto.
eauto.
Qed.
Proof.
induction il; simpl.
auto.
apply set_var_lessdef; auto.
Qed.
(** Semantic preservation for expressions. *) Section EXPRESSIONS.
Variable cunit: Cminor.program.
Variable hf: helper_functions.
Hypothesis LINK: linkorder cunit prog.
Hypothesis HF: helper_functions_declared cunit hf.
Proof.
Admitted.
Proof.
induction 1; intros; simpl.
(* Evar *) exploit H0; eauto.
intros [v' [A B]].
exists v'; split; auto.
constructor; auto.
(* Econst *) destruct cst; simpl in *; inv H.
exists (Vint i); split; auto.
econstructor.
constructor.
auto.
exists (Vfloat f); split; auto.
econstructor.
constructor.
auto.
exists (Vsingle f); split; auto.
econstructor.
constructor.
auto.
exists (Vlong i); split; auto.
apply eval_longconst.
unfold Genv.symbol_address; rewrite <- symbols_preserved; fold (Genv.symbol_address tge i i0).
apply eval_addrsymbol.
apply eval_addrstack.
(* Eunop *) exploit IHeval_expr; eauto.
intros [v1' [A B]].
exploit eval_unop_lessdef; eauto.
intros [v' [C D]].
exploit eval_sel_unop; eauto.
intros [v'' [E F]].
exists v''; split; eauto.
eapply Val.lessdef_trans; eauto.
(* Ebinop *) exploit IHeval_expr1; eauto.
intros [v1' [A B]].
exploit IHeval_expr2; eauto.
intros [v2' [C D]].
exploit eval_binop_lessdef; eauto.
intros [v' [E F]].
assert (G: exists v'', eval_expr tge sp e' m' le (sel_binop op (sel_expr a1) (sel_expr a2)) v'' /\ Val.lessdef v' v'') by (eapply eval_sel_binop; eauto).
destruct G as [v'' [P Q]].
exists v''; split; eauto.
eapply Val.lessdef_trans; eauto.
(* Eload *) exploit IHeval_expr; eauto.
intros [vaddr' [A B]].
exploit Mem.loadv_extends; eauto.
intros [v' [C D]].
exists v'; split; auto.
eapply eval_load; eauto.
Qed.
Proof.
Admitted.
Proof.
induction 1; intros; simpl.
exists (@nil val); split; auto.
constructor.
exploit sel_expr_correct; eauto.
intros [v1' [A B]].
exploit IHeval_exprlist; eauto.
intros [vl' [C D]].
exists (v1' :: vl'); split; auto.
constructor; eauto.
Qed.
Proof.
Admitted.
Proof.
unfold sel_select_opt; intros.
destruct (condition_of_expr (sel_expr cond)) as [cnd args] eqn:C.
exploit sel_expr_correct.
eexact H0.
eauto.
eauto.
intros (vcond' & EVC & LDC).
exploit sel_expr_correct.
eexact H1.
eauto.
eauto.
intros (v1' & EV1 & LD1).
exploit sel_expr_correct.
eexact H2.
eauto.
eauto.
intros (v2' & EV2 & LD2).
assert (Val.bool_of_val vcond' b) by (inv H3; inv LDC; constructor).
exploit eval_condition_of_expr.
eexact EVC.
eauto.
rewrite C.
intros (vargs' & EVARGS & EVCOND).
exploit eval_select; eauto.
intros (v' & X & Y).
exists v'; split; eauto.
eapply Val.lessdef_trans; [|eexact Y].
apply Val.select_lessdef; auto.
Qed.
Proof.
Admitted.
Proof.
intros.
unfold sel_builtin_arg.
exploit sel_expr_correct; eauto.
intros (v1 & A & B).
exists v1; split; auto.
destruct (builtin_arg_ok (builtin_arg (sel_expr a)) c).
apply eval_builtin_arg; eauto.
constructor; auto.
Qed.
Proof.
Admitted.
Proof.
induction 3; intros; simpl.
-
exists (@nil val); split; constructor.
-
exploit sel_builtin_arg_correct; eauto.
intros (v1' & A & B).
edestruct IHeval_exprlist as (vl' & C & D).
exists (v1' :: vl'); split; auto.
constructor; eauto.
Qed.
Proof.
induction oid.
simpl.
intros.
apply set_var_lessdef.
eauto.
eauto.
simpl.
intros.
red.
eauto.
Qed.
Proof.
intros.
destruct oid; simpl; auto.
apply set_var_lessdef; auto.
Qed.
Proof.
Admitted.
Proof.
intros.
unfold sel_builtin_default.
exploit sel_builtin_args_correct; eauto.
intros (vl' & A & B).
exploit external_call_mem_extends; eauto.
intros (v' & m2' & D & E & F & _).
econstructor; exists m2'; split.
econstructor.
eexact A.
eapply external_call_symbols_preserved.
eexact senv_preserved.
eexact D.
split; auto.
apply sel_builtin_res_correct; auto.
Qed.
Proof.
Admitted.
Proof.
intros.
exploit sel_exprlist_correct; eauto.
intros (vl' & A & B).
exploit external_call_mem_extends; eauto.
intros (v' & m2' & D & E & F & _).
unfold sel_builtin.
destruct optid as [id|]; eauto using sel_builtin_default_correct.
destruct ef; eauto using sel_builtin_default_correct.
destruct (lookup_builtin_function name sg) as [bf|] eqn:LKUP; eauto using sel_builtin_default_correct.
destruct (sel_known_builtin bf (sel_exprlist al)) as [a|] eqn:SKB; eauto using sel_builtin_default_correct.
simpl in D.
red in D.
rewrite LKUP in D.
inv D.
exploit eval_sel_known_builtin; eauto.
intros (v'' & U & V).
econstructor; exists m2'; split.
econstructor.
eexact U.
split; auto.
apply set_var_lessdef; auto.
apply Val.lessdef_trans with v'; auto.
Qed.
Proof.
Admitted.
Proof.
intros until s; functional induction (classify_stmt s); intros; try discriminate.
-
apply star_refl.
-
eapply star_trans; eauto.
eapply star_two.
constructor.
constructor.
traceEq.
traceEq.
-
eapply star_left.
constructor.
eapply star_right.
eauto.
constructor.
traceEq.
traceEq.
Qed.
Proof.
Admitted.
Proof.
intros until s; functional induction (classify_stmt s); intros; try discriminate.
-
inv H0.
apply star_one.
constructor; auto.
-
eapply star_trans; eauto.
eapply star_two.
constructor.
constructor.
traceEq.
traceEq.
-
eapply star_left.
constructor.
eapply star_right.
eauto.
constructor.
traceEq.
traceEq.
Qed.
Proof.
Admitted.
Proof.
intros until s; functional induction (classify_stmt s); intros CL WT; try discriminate.
-
inv CL; inv WT; auto.
-
inv WT; eauto.
-
inv WT; eauto.
Qed.
Proof.
Admitted.
Proof.
intros.
destruct (sel_select_opt ty cond a1 a2) as [a'|] eqn:SSO; simpl in H1; inv H1.
destruct (eval_safe_expr ge f sp e m a1) as (v1 & EV1); auto.
destruct (eval_safe_expr ge f sp e m a2) as (v2 & EV2); auto.
assert (TY1: Val.has_type v1 ty) by (eapply wt_eval_expr; eauto).
assert (TY2: Val.has_type v2 ty) by (eapply wt_eval_expr; eauto).
exploit sel_select_opt_correct; eauto.
intros (v' & EV' & LD).
exists a', v1, v2, v'; intuition eauto.
apply Val.lessdef_trans with (Val.select (Some b) v1 v2 ty).
simpl.
rewrite Val.normalize_idem; auto.
destruct b; auto.
assumption.
Qed.
Proof.
Admitted.
Proof.
unfold if_conversion; intros until m'; intros IFC DE WTE WT1 WT2 EVC BOV ELD MEXT.
set (s0 := if b then ifso else ifnot).
set (ki := known_id f) in *.
destruct (classify_stmt ifso) eqn:IFSO; try discriminate; destruct (classify_stmt ifnot) eqn:IFNOT; try discriminate; unfold if_conversion_base in IFC.
-
destruct (is_known ki id && safe_expr ki (Cminor.Evar id) && safe_expr ki a && if_conversion_heuristic cond (Cminor.Evar id) a (env id)) eqn:B; inv IFC.
InvBooleans.
exploit (eval_select_safe_exprs (Cminor.Evar id) a); eauto.
constructor.
eapply classify_stmt_wt; eauto.
intros (a' & v1 & v2 & v' & A & B & C & D & E).
exists (PTree.set id (if b then v1 else v2) e), (PTree.set id v' e').
split.
subst s.
constructor; auto.
split.
unfold s0; destruct b.
rewrite PTree.gsident by (inv B; auto).
apply classify_stmt_sound_1; auto.
eapply classify_stmt_sound_2; eauto.
apply set_var_lessdef; auto.
-
destruct (is_known ki id && safe_expr ki a && safe_expr ki (Cminor.Evar id) && if_conversion_heuristic cond a (Cminor.Evar id) (env id)) eqn:B; inv IFC.
InvBooleans.
exploit (eval_select_safe_exprs a (Cminor.Evar id)); eauto.
eapply classify_stmt_wt; eauto.
constructor.
intros (a' & v1 & v2 & v' & A & B & C & D & E).
exists (PTree.set id (if b then v1 else v2) e), (PTree.set id v' e').
split.
subst s.
constructor; auto.
split.
unfold s0; destruct b.
eapply classify_stmt_sound_2; eauto.
rewrite PTree.gsident by (inv C; auto).
apply classify_stmt_sound_1; auto.
apply set_var_lessdef; auto.
-
destruct (ident_eq id id0); try discriminate.
subst id0.
destruct (is_known ki id && safe_expr ki a && safe_expr ki a0 && if_conversion_heuristic cond a a0 (env id)) eqn:B; inv IFC.
InvBooleans.
exploit (eval_select_safe_exprs a a0); eauto.
eapply classify_stmt_wt; eauto.
eapply classify_stmt_wt; eauto.
intros (a' & v1 & v2 & v' & A & B & C & D & E).
exists (PTree.set id (if b then v1 else v2) e), (PTree.set id v' e').
split.
subst s.
constructor; auto.
split.
unfold s0; destruct b; eapply classify_stmt_sound_2; eauto.
apply set_var_lessdef; auto.
Qed.
End EXPRESSIONS.
(** Semantic preservation for functions and statements. *) Inductive match_cont: Cminor.program -> helper_functions -> known_idents -> typenv -> Cminor.cont -> CminorSel.cont -> Prop := | match_cont_seq: forall cunit hf ki env s s' k k', sel_stmt (prog_defmap cunit) ki env s = OK s' -> match_cont cunit hf ki env k k' -> match_cont cunit hf ki env (Cminor.Kseq s k) (Kseq s' k') | match_cont_block: forall cunit hf ki env k k', match_cont cunit hf ki env k k' -> match_cont cunit hf ki env (Cminor.Kblock k) (Kblock k') | match_cont_other: forall cunit hf ki env k k', match_call_cont k k' -> match_cont cunit hf ki env k k' with match_call_cont: Cminor.cont -> CminorSel.cont -> Prop := | match_cont_stop: match_call_cont Cminor.Kstop Kstop | match_cont_call: forall cunit hf env id f sp e k f' e' k', linkorder cunit prog -> helper_functions_declared cunit hf -> sel_function (prog_defmap cunit) hf f = OK f' -> type_function f = OK env -> match_cont cunit hf (known_id f) env k k' -> env_lessdef e e' -> match_call_cont (Cminor.Kcall id f sp e k) (Kcall id f' sp e' k').
Inductive match_states: Cminor.state -> CminorSel.state -> Prop := | match_state: forall cunit hf f f' s k s' k' sp e m e' m' env (LINK: linkorder cunit prog) (HF: helper_functions_declared cunit hf) (TF: sel_function (prog_defmap cunit) hf f = OK f') (TYF: type_function f = OK env) (TS: sel_stmt (prog_defmap cunit) (known_id f) env s = OK s') (MC: match_cont cunit hf (known_id f) env k k') (LD: env_lessdef e e') (ME: Mem.extends m m'), match_states (Cminor.State f s k sp e m) (State f' s' k' sp e' m') | match_callstate: forall cunit f f' args args' k k' m m' (LINK: linkorder cunit prog) (TF: match_fundef cunit f f') (MC: match_call_cont k k') (LD: Val.lessdef_list args args') (ME: Mem.extends m m'), match_states (Cminor.Callstate f args k m) (Callstate f' args' k' m') | match_returnstate: forall v v' k k' m m' (MC: match_call_cont k k') (LD: Val.lessdef v v') (ME: Mem.extends m m'), match_states (Cminor.Returnstate v k m) (Returnstate v' k' m') | match_builtin_1: forall cunit hf ef args optid f sp e k m al f' e' k' m' env (LINK: linkorder cunit prog) (HF: helper_functions_declared cunit hf) (TF: sel_function (prog_defmap cunit) hf f = OK f') (TYF: type_function f = OK env) (MC: match_cont cunit hf (known_id f) env k k') (EA: Cminor.eval_exprlist ge sp e m al args) (LDE: env_lessdef e e') (ME: Mem.extends m m'), match_states (Cminor.Callstate (External ef) args (Cminor.Kcall optid f sp e k) m) (State f' (sel_builtin optid ef al) k' sp e' m') | match_builtin_2: forall cunit hf v v' optid f sp e k m f' e' m' k' env (LINK: linkorder cunit prog) (HF: helper_functions_declared cunit hf) (TF: sel_function (prog_defmap cunit) hf f = OK f') (TYF: type_function f = OK env) (MC: match_cont cunit hf (known_id f) env k k') (LDV: Val.lessdef v v') (LDE: env_lessdef (set_optvar optid v e) e') (ME: Mem.extends m m'), match_states (Cminor.Returnstate v (Cminor.Kcall optid f sp e k) m) (State f' Sskip k' sp e' m').
Proof.
Admitted.
Proof.
induction 1; simpl; auto.
inversion H; subst; auto.
Qed.
Proof.
Admitted.
Proof.
destruct 1; intros; try contradiction.
split; auto.
inv H; auto.
Qed.
(* Remark match_call_cont_cont: forall k k', match_call_cont k k' -> exists cunit hf ki env, match_cont cunit hf ki env k k'. Proof. intros. simple refine (let cunit : Cminor.program := _ in _). econstructor. apply nil. apply nil. apply xH. simple refine (let hf : helper_functions := _ in _). econstructor; apply xH. exists cunit, hf; auto. Qed. *) Definition nolabel (s: Cminor.stmt) : Prop := forall lbl k, Cminor.find_label lbl s k = None.
Definition nolabel' (s: stmt) : Prop := forall lbl k, find_label lbl s k = None.
Proof.
Admitted.
Proof.
intros s.
functional induction (classify_stmt s); intros.
-
red; auto.
-
red; auto.
-
apply IHs0 in H.
red; intros; simpl.
apply H.
-
apply IHs0 in H.
red; intros; simpl.
rewrite H; auto.
-
congruence.
Qed.
Proof.
Admitted.
Proof.
unfold if_conversion_base; intros.
destruct (is_known ki id && safe_expr ki a1 && safe_expr ki a2 && if_conversion_heuristic a a1 a2 (env id)); try discriminate.
destruct (sel_select_opt (env id) a a1 a2); inv H.
red; auto.
Qed.
Proof.
Admitted.
Proof.
unfold if_conversion; intros.
Ltac conclude := split; [apply classify_stmt_nolabel;congruence |split; [apply classify_stmt_nolabel;congruence |eapply if_conversion_base_nolabel; eauto]].
destruct (classify_stmt s1) eqn:C1; try discriminate; destruct (classify_stmt s2) eqn:C2; try discriminate.
conclude.
conclude.
destruct (ident_eq id id0).
conclude.
discriminate.
Qed.
Proof.
Admitted.
Proof.
unfold sel_builtin; intros; red; intros.
destruct optid; auto.
destruct ef; auto.
destruct lookup_builtin_function; auto.
destruct sel_known_builtin; auto.
Qed.
Proof.
Admitted.
Proof.
induction s; intros until k'; simpl; intros MC SE; try (monadInv SE); simpl; auto.
(* store *) unfold store.
destruct (addressing m (sel_expr e)); simpl; auto.
(* call *) destruct (classify_call (prog_defmap cunit) e); simpl; auto.
rewrite sel_builtin_nolabel; auto.
(* tailcall *) destruct (classify_call (prog_defmap cunit) e); simpl; auto.
(* builtin *) rewrite sel_builtin_nolabel; auto.
(* seq *) exploit (IHs1 (Cminor.Kseq s2 k)).
constructor; eauto.
eauto.
destruct (Cminor.find_label lbl s1 (Cminor.Kseq s2 k)) as [[sx kx] | ]; destruct (find_label lbl x (Kseq x0 k')) as [[sy ky] | ]; intuition.
apply IHs2; auto.
(* ifthenelse *) destruct (if_conversion ki env e s1 s2) as [s|] eqn:IFC.
inv SE.
exploit if_conversion_nolabel; eauto.
intros (A & B & C).
rewrite A, B, C.
auto.
monadInv SE; simpl.
exploit (IHs1 k); eauto.
destruct (Cminor.find_label lbl s1 k) as [[sx kx] | ]; destruct (find_label lbl x k') as [[sy ky] | ]; intuition.
apply IHs2; auto.
(* loop *) apply IHs.
constructor; auto.
simpl; rewrite EQ; auto.
auto.
(* block *) apply IHs.
constructor; auto.
auto.
(* switch *) destruct b.
destruct (validate_switch Int64.modulus n l (compile_switch Int64.modulus n l)); inv SE.
simpl; auto.
destruct (validate_switch Int.modulus n l (compile_switch Int.modulus n l)); inv SE.
simpl; auto.
(* return *) destruct o; inv SE; simpl; auto.
(* label *) destruct (ident_eq lbl l).
auto.
apply IHs; auto.
Qed.
Definition measure (s: Cminor.state) : nat := match s with | Cminor.Callstate _ _ _ _ => 0%nat | Cminor.State _ _ _ _ _ _ => 1%nat | Cminor.Returnstate _ _ _ => 2%nat end.
Proof.
Admitted.
Proof.
induction 1; intros T1 ME WTS; inv ME; try (monadInv TS).
-
(* skip seq *) inv MC.
left; econstructor; split.
econstructor.
econstructor; eauto.
inv H.
-
(* skip block *) inv MC.
left; econstructor; split.
econstructor.
econstructor; eauto.
inv H.
-
(* skip call *) exploit Mem.free_parallel_extends; eauto.
intros [m2' [A B]].
left; econstructor; split.
econstructor.
eapply match_is_call_cont; eauto.
erewrite stackspace_function_translated; eauto.
econstructor; eauto.
eapply match_is_call_cont; eauto.
-
(* assign *) exploit sel_expr_correct; eauto.
intros [v' [A B]].
left; econstructor; split.
econstructor; eauto.
econstructor; eauto.
apply set_var_lessdef; auto.
-
(* store *) exploit sel_expr_correct.
try apply LINK.
try apply HF.
eexact H.
eauto.
eauto.
intros [vaddr' [A B]].
exploit sel_expr_correct.
try apply LINK.
try apply HF.
eexact H0.
eauto.
eauto.
intros [v' [C D]].
exploit Mem.storev_extends; eauto.
intros [m2' [P Q]].
left; econstructor; split.
eapply eval_store; eauto.
econstructor; eauto.
-
(* Scall *) exploit classify_call_correct; eauto.
destruct (classify_call (prog_defmap cunit) a) as [ | id | ef].
+
(* indirect *) exploit sel_expr_correct; eauto.
intros [vf' [A B]].
exploit sel_exprlist_correct; eauto.
intros [vargs' [C D]].
exploit functions_translated; eauto.
intros (cunit' & fd' & U & V & W).
left; econstructor; split.
econstructor; eauto.
econstructor; eauto.
eapply sig_function_translated; eauto.
eapply match_callstate with (cunit := cunit'); eauto.
eapply match_cont_call with (cunit := cunit) (hf := hf); eauto.
+
(* direct *) intros [b [U V]].
exploit sel_exprlist_correct; eauto.
intros [vargs' [C D]].
exploit functions_translated; eauto.
intros (cunit' & fd' & X & Y & Z).
left; econstructor; split.
econstructor; eauto.
subst vf.
econstructor; eauto.
rewrite symbols_preserved; eauto.
eapply sig_function_translated; eauto.
eapply match_callstate with (cunit := cunit'); eauto.
eapply match_cont_call with (cunit := cunit) (hf := hf); eauto.
+
(* turned into Sbuiltin *) intros EQ.
subst fd.
right; left; split.
simpl; omega.
split; auto.
econstructor; eauto.
-
(* Stailcall *) exploit Mem.free_parallel_extends; eauto.
intros [m2' [P Q]].
erewrite <- stackspace_function_translated in P by eauto.
exploit sel_expr_correct; eauto.
intros [vf' [A B]].
exploit sel_exprlist_correct; eauto.
intros [vargs' [C D]].
exploit functions_translated; eauto.
intros (cunit' & fd' & E & F & G).
left; econstructor; split.
exploit classify_call_correct.
eexact LINK.
eauto.
eauto.
destruct (classify_call (prog_defmap cunit)) as [ | id | ef]; intros.
econstructor; eauto.
econstructor; eauto.
eapply sig_function_translated; eauto.
destruct H2 as [b [U V]].
subst vf.
inv B.
econstructor; eauto.
econstructor; eauto.
rewrite symbols_preserved; eauto.
eapply sig_function_translated; eauto.
econstructor; eauto.
econstructor; eauto.
eapply sig_function_translated; eauto.
eapply match_callstate with (cunit := cunit'); eauto.
eapply call_cont_commut; eauto.
-
(* Sbuiltin *) exploit sel_builtin_correct; eauto.
intros (e2' & m2' & P & Q & R).
left; econstructor; split.
eexact P.
econstructor; eauto.
-
(* Seq *) left; econstructor; split.
constructor.
econstructor; eauto.
constructor; auto.
-
(* Sifthenelse *) simpl in TS.
destruct (if_conversion (known_id f) env a s1 s2) as [s|] eqn:IFC; monadInv TS.
+
inv WTS.
inv WT_FN.
assert (env0 = env) by congruence.
subst env0.
inv WT_STMT.
exploit if_conversion_correct; eauto.
set (s0 := if b then s1 else s2).
intros (e1 & e1' & A & B & C).
right; right.
econstructor; econstructor.
split.
eexact B.
split.
eexact A.
econstructor; eauto.
+
exploit sel_expr_correct; eauto.
intros [v' [A B]].
assert (Val.bool_of_val v' b).
inv B.
auto.
inv H0.
left; exists (State f' (if b then x else x0) k' sp e' m'); split.
econstructor; eauto.
eapply eval_condexpr_of_expr; eauto.
econstructor; eauto.
destruct b; auto.
-
(* Sloop *) left; econstructor; split.
constructor.
econstructor; eauto.
constructor; auto.
simpl; rewrite EQ; auto.
-
(* Sblock *) left; econstructor; split.
constructor.
econstructor; eauto.
constructor; auto.
-
(* Sexit seq *) inv MC.
left; econstructor; split.
constructor.
econstructor; eauto.
inv H.
-
(* Sexit0 block *) inv MC.
left; econstructor; split.
constructor.
econstructor; eauto.
inv H.
-
(* SexitS block *) inv MC.
left; econstructor; split.
constructor.
econstructor; eauto.
inv H.
-
(* Sswitch *) inv H0; simpl in TS.
+
set (ct := compile_switch Int.modulus default cases) in *.
destruct (validate_switch Int.modulus default cases ct) eqn:VALID; inv TS.
exploit sel_expr_correct; eauto.
intros [v' [A B]].
inv B.
left; econstructor; split.
econstructor.
eapply sel_switch_int_correct; eauto.
econstructor; eauto.
+
set (ct := compile_switch Int64.modulus default cases) in *.
destruct (validate_switch Int64.modulus default cases ct) eqn:VALID; inv TS.
exploit sel_expr_correct; eauto.
intros [v' [A B]].
inv B.
left; econstructor; split.
econstructor.
eapply sel_switch_long_correct; eauto.
econstructor; eauto.
-
(* Sreturn None *) exploit Mem.free_parallel_extends; eauto.
intros [m2' [P Q]].
erewrite <- stackspace_function_translated in P by eauto.
left; econstructor; split.
econstructor.
simpl; eauto.
econstructor; eauto.
eapply call_cont_commut; eauto.
-
(* Sreturn Some *) exploit Mem.free_parallel_extends; eauto.
intros [m2' [P Q]].
erewrite <- stackspace_function_translated in P by eauto.
exploit sel_expr_correct; eauto.
intros [v' [A B]].
left; econstructor; split.
econstructor; eauto.
econstructor; eauto.
eapply call_cont_commut; eauto.
-
(* Slabel *) left; econstructor; split.
constructor.
econstructor; eauto.
-
(* Sgoto *) assert (sel_stmt (prog_defmap cunit) (known_id f) env (Cminor.fn_body f) = OK (fn_body f')).
monadInv TF; simpl.
congruence.
exploit (find_label_commut cunit hf (known_id f) env lbl (Cminor.fn_body f) (Cminor.call_cont k)).
apply match_cont_other.
eapply call_cont_commut; eauto.
eauto.
rewrite H.
destruct (find_label lbl (fn_body f') (call_cont k'0)) as [[s'' k'']|] eqn:?; intros; try contradiction.
destruct H1.
left; econstructor; split.
econstructor; eauto.
econstructor; eauto.
-
(* internal function *) destruct TF as (hf & HF & TF).
monadInv TF.
generalize EQ; intros TF; monadInv TF.
exploit Mem.alloc_extends.
eauto.
eauto.
apply Z.le_refl.
apply Z.le_refl.
intros [m2' [A B]].
left; econstructor; split.
econstructor; simpl; eauto.
econstructor; simpl; eauto.
apply match_cont_other; auto.
apply set_locals_lessdef.
apply set_params_lessdef; auto.
-
(* external call *) destruct TF as (hf & HF & TF).
monadInv TF.
exploit external_call_mem_extends; eauto.
intros [vres' [m2 [A [B [C D]]]]].
left; econstructor; split.
econstructor.
eapply external_call_symbols_preserved; eauto.
apply senv_preserved.
econstructor; eauto.
-
(* external call turned into a Sbuiltin *) exploit sel_builtin_correct; eauto.
intros (e2' & m2' & P & Q & R).
left; econstructor; split.
eexact P.
econstructor; eauto.
-
(* return *) inv MC.
left; econstructor; split.
econstructor.
econstructor; eauto.
destruct optid; simpl; auto.
apply set_var_lessdef; auto.
-
(* return of an external call turned into a Sbuiltin *) right; left; split.
simpl; omega.
split.
auto.
econstructor; eauto.
Qed.
Proof.
Admitted.
Proof.
destruct 1.
exploit function_ptr_translated; eauto.
intros (cu & f' & A & B & C).
econstructor; split.
econstructor.
eapply (Genv.init_mem_match TRANSF); eauto.
rewrite (match_program_main TRANSF).
fold tge.
rewrite symbols_preserved.
eauto.
eexact A.
rewrite <- H2.
eapply sig_function_translated; eauto.
econstructor; eauto.
constructor.
apply Mem.extends_refl.
Qed.
Proof.
intros.
inv H0.
inv H.
inv LD.
inv MC.
econstructor.
Qed.
Proof.
intros.
inv H0.
inv H.
inv MC.
inv LD.
constructor.
Qed.
Proof.
Admitted.
Proof.
set (MS := fun S T => match_states S T /\ wt_state S).
apply forward_simulation_determ_star with (match_states := MS) (measure := measure).
-
apply Cminor.semantics_determinate.
-
apply senv_preserved.
-
intros.
exploit sel_initial_states; eauto.
intros (T & P & Q).
exists T; split; auto; split; auto.
eapply wt_initial_state.
eexact wt_prog.
auto.
-
intros.
destruct H.
eapply sel_final_states; eauto.
-
intros S1 t S2 A T1 [B C].
assert (wt_state S2) by (eapply subject_reduction; eauto using wt_prog).
unfold MS.
exploit sel_step_correct; eauto.
intros [(T2 & D & E) | [(D & E & F) | (S3 & T2 & D & E & F)]].
+
exists S2, T2.
intuition auto using star_refl, plus_one.
+
subst t.
exists S2, T1.
intuition auto using star_refl.
+
assert (wt_state S3) by (eapply subject_reduction_star; eauto using wt_prog).
exists S3, T2.
intuition auto using plus_one.
Qed.
End PRESERVATION.
Proof.
Admitted.
Proof.
red; intros.
destruct (link_linkorder _ _ _ H) as [LO1 LO2].
eapply link_match_program; eauto.
intros.
elim H3; intros hf1 [A1 B1].
elim H4; intros hf2 [A2 B2].
Local Transparent Linker_fundef.
simpl in *.
destruct f1, f2; simpl in *; monadInv B1; monadInv B2; simpl.
-
discriminate.
-
destruct e; inv H2.
econstructor; eauto.
-
destruct e; inv H2.
econstructor; eauto.
-
destruct (external_function_eq e e0); inv H2.
econstructor; eauto.
Qed.
"(* End of File *)"